LL(1) Grammar Parsing

  1. S->S+A | S-A | A+S | A-S | B*A

B->aB | B(a+b) | B*a | a(a+b) |b

A -> a

Jawab

S->S+A | S-A | A+S | A-S | B*A

Left recursive

S-> A+SS’ | A-SS’ | B*AS’

S’->+AS’ | -AS’ | ε

Left factoring

S-> AS” | B*AS’

S’->+AS’ | -AS’ | ε

S”-> +SS’ | -SS’

 

B->aB | B(a+b) | B*a | a(a+b) |b

Left recursive

B->aBB’ | a(a+b)B’ |bB’

B’-> (a+b)B’ | *aB’ | ε

Left factoring

B-> aB” |bB’

B’-> (a+b)B’ | *aB’ | ε

B”-> BB’ | (a+b)B’

 

Sehingga hasil penyederhanaan

S-> AS” | B*AS’

S’->+AS’ | -AS’ | ε

S”-> +SS’ | -SS’

B-> aB” |bB’

B’-> (a+b)B’ | *aB’ | ε

B”-> BB’ | (a+b)B’

A -> a

Menentukan First dan Follow

First (S) = {a,b}

First (S’) = {+,-, ε }

First (S”) = {+,-}

First (B) = {a,b}

First (B’) = { (,*, ε }

First (B”) = {a,b,( }

First (A) = {a}

Follow(S)={$}

Follow(S)={$}

Follow(S)={$}

Follow(B)={*}

Follow(B)={*}

Follow(B)={*}

Follow(A)={+,-,$}

1tekom

 

2. Soal:

S -> if E then S | if E then S else S | V:= E

V -> id | id [E]

E -> E+T | E-T | T

T -> T*F | T/ F| F

F -> V | (E) | const

Jawaban

S -> if E then S S’| V:= E

S’ -> ε | else S

V -> id V’

V’ -> ε | [E]

E -> TE’

E’ -> +TE’ | -TE’ | ε

T -> FT’

T’ -> *FT’ | / FT’| ε

F -> V | (E) | const

22 tabel no 2

 

3. Dari CFG (Context Free Grammar) berikut ini :

S  -> a=A

A  -> aA’ | bA’

A’ -> +AA’ | ε

 

First (S)  = { a }                                   Follow (S)  = { $ }

First (A)  = { a,b }                               Follow (A)  = { $,+ }

First (A’) = { +, ε }                             Follow (A’) = { $,+ }

3tekom

4.   Soal

be -> bt be’

be’ -> or bt be’

be’ -> ε

bt -> bf bt’

bt’ -> and bf bt’

bt’ -> ε

bf -> not bf

bf -> (be)

bf -> true

bf -> false

periksa input not ( true or false ) and true and false not (false) true

jawab

first (be) = {not , ( , true, false}

first (be’) = {or , ε}

first(bt) = {not, (, true,false}

first(bt’)= {and, ε}

first(bf)= {not, (, true, false}

follow (be) = {$, ) }

follow (be’) = {$ , ) }

follow(bt) = {or, $, ) }

follow(bt’)= {or, $, ) }

follow(bf)= {or, $, ), and }

2tekom 55 56

 

Kelompok 5

Bernardus Robby                             1501144332

Elisabeth Oktaviani                          1501154516

I Kadek Mega Adi Utama              1501159170

Michael Chandra                              1501146621

www.binus.ac.id

 

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *